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Abstract. This paper considers a global requirements model in the
form of partially ordered actions of UML collaborations, or a high-level
MSC (UML interaction sequences), and then studies the derivation of
a distributed design model which may include coordination messages
exchanged between the different system components. Different problems
for the direct realization (without coordination messages) of a design
model for special cases of alternatives followed by strict or weak sequence
are discussed and solutions provided. Then the case of a weak while loop
is considered. While previous work proposes the addition of sequence
numbers in the involved messages, we show that in most cases such
sequence numbers are not required. We consider message FIFO transmis-
sion or without order, and identify two potential problems: loop termi-
nation race, and message overtaking. A proposition is given which states
under which conditions the directly realized distributed design model
does not have these problems and therefore does not need additional
sequence numbers. Another proposition provides certain modifications
(including the addition of sequence numbers) that can be applied to the
design model when these problems are present, and such that the result-
ing design model conforms to the requirements. These results can be
viewed as an improvement of the previous work in [1] by minimizing the
number of additional sequence numbers that must be included in the
messages of a weak while loop collaboration.
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1 Introduction

In this paper, we are concerned of the transformation from a global require-
ments model, which describe the behavior of a distributed system in an abstract
manner by defining the local actions to be performed by the different system
components, to a distributed design model, which defines the behavior of each
system component separately, including its local actions plus the exchange of
coordination messages which are necessary to assure that the actions of the dif-
ferent components are performed in the required order. This problem is often
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called realizability of service specifications where the service specification is the
global requirements model and the specification is said to be directly realizable
if a design model can be constructed without any coordination messages. Many
difficulties are associated with the realizability of service specifications like non-
local choice [2], non-deterministic choice [3], and race conditions [4]. Most of the
work in this area uses Message Sequence Charts (MSC) [5] or UML interaction
sequences [6] as a modeling paradigm for the global requirements model. We
have proposed to use the concept of collaborations for defining the requirements
model [6–9]. A collaboration identifies a certain number of system components
that play certain roles in the collaboration and defines a global behavior to be
performed by these roles. The behavior is defined in terms of actions to be per-
formed by the roles, and a partial order that defines constraints on the order in
which these actions may be performed. Normally, the behavior of a collabora-
tion is defined in terms of sub-collaborations that are performed in a specified
order. The ordering relationships are strict or weak sequential order, alterna-
tives, concurrency and looping behavior. This formalism is similar to HMSC [10]
and UML [11].

In [1], an algorithm is proposed to derive a distributed design model from
a global requirements model with a behavior defined by sub-collaborations in
sequential, alternative, concurrent or looping composition. As in [12,13], the
algorithm may introduce coordination messages for strict sequencing. It also
deals with weak sequencing and introduces a choice indication (cim) message if
one of the roles does not participate in all alternatives of a choice, and introduces
sequence numbers in all the messages in the body of a loop with weak sequencing
between the repetitions. The algorithm assumes that each component has a
message pool where received messages are stored until they are consumed in the
order required by the component.

In this paper we investigate this problem in more detail. The main contribu-
tions are as follows:

– We show that in many cases the cim message is not required.
– We discuss the reception of coordinating messages if an alternative with dif-

ferent sets of terminating roles is followed in strict sequence by another sub-
collaboration; a case which was not covered in [1].

– We discuss in detail under which conditions sequence numbers in the messages
of a weak while loop are required for coordination. In particular, we have a
proposition which states under which condition a weak while loop is directly
realizable (without sequence numbers nor additional coordination messages);
we distinguish between networks message delivery with and without FIFO
order; and we point out that, in general, not all messages need sequence
numbers when the loop is not directly realizable.

– We show that the distributed design model for a weak while loop may be
constructed such that for certain components the direct realization approach
can be taken, while the approaches of [1] or of [14] may be used independently
for the other components. The approach of [1] assumes that the message pool
has an interface that allows to wait for a message with a specific sequence
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number. If such a function is not available, as for instance in typical program-
ming languages interfaces, the approach of [14] (which is more complex) can
be used.

– We discuss in detail the functions that the interface of the message pool of a
component should provide for the different behavior composition rules.

The paper is organized as follows: In Sect. 2, we present the concept of col-
laboration which is used for the modeling the behavior of systems. The order of
execution of actions is defined in terms of partial orders. We first give an intu-
itive explanation and some simple examples, then we discuss the formalization of
these concepts following Pratt [15] and complement this formal model with the
concept of roles which represent the different system components. We also define
what it means that a more detailed behavior model (e.g. a distributed design
model) conforms to a more abstract requirement model. In Sect. 3, we discuss
the some issues related to the realizability of a global requirements model, give
a short literature review, discuss two issues related to alternatives, and propose
an interface for the message reception pool. Then in Sect. 4, we discuss in detail
the derivation of a distributed design model for a weak while loop behavior.
Section 5 is the conclusion.

2 Definitions and Notations

2.1 The Concept of Collaboration

As mentioned above, a collaboration is a collection of actions that are performed
by a distributed system. In the requirements model, a certain number of roles
are identified, and each action is performed by one of these roles such that
their execution satisfies a given partial order. Figure 1(a) shows the example of
a collaboration X using a graphical notation borrowed from [9]. Collaboration
X has three roles, x, y, and z, and includes 6 actions, ai (i = 1, 2, ... 6). The
partial order for the execution of these actions is shown in Fig. 1(b), where
ai → aj means that the execution of action ai is performed before the execution
of action aj .

For the composition of two collaborations A and B in strict sequence, written
“A ;s B”, any action of B may only executed when all actions of A have com-
pleted. Therefore it is important to identify the initial actions (those for which
there are no earlier actions in the partial order) and the final actions (those for
which there are no later actions in the partial order). As discussed in [13], for
ensuring strict sequencing between A and B, it is sufficient to ensure that all
initial actions of B start after all final actions of A have completed. Figure 1(c)
shows a more abstract view of collaboration X showing only the initial and final
actions of the collaboration. The order of execution of the actions of collaboration
X is also be presented in Fig. 1(d) using the notation proposed in [8] (adapted
from Activity Diagrams). Here the Ai (i = 1, 2, ... 6) are sub-collaborations, and
each Ai contains a single action, namely ai.
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Figure 2 shows two other compositions of collaborations. Figure 2(a) shows
a collaboration including two decision points: the possible execution orders are
C0 ;s C1 ;s C3, C0 ;s C2 ;s C3, and C0 ;s C2 ;s C4 ;s C3, where the Ci are arbitrary
sub-collaborations. Figure 2(b) shows a weak while loop where sub-collaboration
C2 is performed after zero, one or more executions of sub-collaboration C1. The
sequencing between successive executions of C1 and the final execution of C2 are
weak sequences, which means that sequencing is only enforced locally by each
role, but not globally.
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Fig. 1. (a) Example of a collaboration X. (b) The partial order for the execution of the
actions of X. (c) An abstract view of the collaboration X, showing only initial and final
actions. (d) Another representation for the order of actions executions (adapted from
Activity Diagrams). (e) Distributed implementation for collaboration X using MSC
notation

2.2 Behavior of Collaborations: A Formalization

As pointed out by Lamport [16], partial order is a natural concept for describing
the execution of distributed systems. Pratt [15] proposed to use labelled partially
ordered set (lposet) [17] for this purpose. A (strict) lposet, also called pomset
(partially ordered multi-set) is a tuple (E,

∑
, <, l), where E is a set of events,∑

is a set of action labels, < ⊆ E×E is a irreflexive, asymmetric, and transitive
order on E (where “e1 < e2” means that event e2 is after event e1, or e1 → e2
and l is a labeling function l : E → ∑

.
The behavior of the collaboration X shown in Fig. 1(a) can be modelled by

a lposet (E,
∑

, <, l), where E = {ei| i = 1, 2, ... 6},
∑

= {ai| i = 1, 2, ... 6}, <
is as shown in Fig. 1(b), and l(ei) = ai for | i = 1, 2, ... 6. Note that the events
in the figure are labelled with the action labels, not with the event names.
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Fig. 2. (a) An example of a composition of collaborations including two decision points.
(b) Weak while loop

The collaboration X shown above is a special case of a requirements model
which has a behavior defined by a single pomset. However, in general, the behav-
ior of a collaboration consists of several pomsets. Gischler [18] uses the term
“process” to designate a behavioral model, such as a collaboration, and the
term “behavior” for the set of pomsets that are allowed for the execution by
that model. The following rules are defined for the behavior of process (or col-
laboration) compositions (see for instance [18]):

The strict sequence of two processes C1 and C2, written C1; s C2, has
the following behavior: the set of all strict concatenations of one pomset in
the behavior of C1 with one pomset in the behavior of C2 (where the strict
combination of two pomsets P1 and P2 means that all events of P2 are after all
events of P1.

The concurrent execution of two processes C1 and C2, written C1|| C2, has
the following behavior: the set of all concurrent combinations of one pomset in
the behavior of C1 with one pomset in the behavior of C2 (where the concurrent
combinations of two pomsets P1 and P2 is the pomset that contains the union of
events and actions, and no order dependencies between the events of P1 and P2.

A choice between two alternative processes C1 and C2, written C1 + C2,
has the following behavior: it is the union of the pomsets in the behavior C1 and
the behavior of C2.

For an arbitrary number of repetitions of a process C, the Kleene star oper-
ator is defined as usual. The behavior of C∗s is defined to be strict sequence of
zero, one or more repetitions of C in strict sequence.

As an example, the behavior of the collaboration shown in Fig. 2(a) can
be defined by the expression C0 ;s (C1 + C2 ;s (C4 + 1));s C3, where 1 repre-
sents the pomset with an empty set of events. We note that the literature on
pomsets usually only considers strict sequencing, which makes abstraction of
system components and roles. These concepts are necessary for the derivation
of a distributed system design model, and for the definition of weak sequencing
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(which was first introduced for MSCs). Therefore we introduce the concept of a
collaboration-pomset, which is an extension of a pomset as follows:

Definition 1 (Collaboration-Pomset). A collaboration-pomset is a tuple
(E,

∑
, <, l,R, ρ), where (E,

∑
, <, l) is a pomset, R is a set of roles, and ρ is a

mapping ρ : E → R. ρ assigns a role to each event.

Definition 2 (Collaboration-Behavior). A collaboration-behavior is a set
of collaboration-pomsets which have a common set of roles R.

We consider in the following mainly collaborations that have a behavior (i,e,
a collaboration-behavior) which can be defined by regular expressions, such as
discussed above, or by diagrams, such as shown in Figs. 1 and 2.

Definition 3 (Weak Sequence). The weak sequence of two collaborations C1

and C2, written C1;w C2, has the following behavior: the set of all weak concate-
nations of one collaboration-pomset in the behavior of C1 with one collaboration-
pomset in the behavior of C2 (where the weak concatenation of two collaboration-
pomsets P1 and P2 means that, for any role r, all events of P2 that are assigned
to the role r are after all events of P1 that are assigned to r.

Note: It was shown in [19] that associativity does not always hold for multiple
strict and weak sequencing.

Like the Kleene operator for strict sequencing C∗s (mentioned above), we
also define arbitrary, multiple weak sequencing using the notation C∗w . We
consider in Sect. 4 the distributed design model for a weak while loop, as shown
in Fig. 2(b), which is defined by the expression “C ∗w

1 ;w C2”.

2.3 Comparing Two Behavior Models

We use the same modeling concepts for requirement models and distributed
system design models, namely collaborations (as defined in Sect. 2.2). In this
subsection we ask the question: Does a given design model C2 conform to a
given requirement model C1? The conformance relation should be defined such
that if C2 conforms to C1, then any implementation that conforms to C2 will
also conform to C1.

We assume that a design model C2 conforming to a more abstract model
C1 should include all events of C1 associated with the same actions and roles
as in C1, but it may contain additional events that are introduced during the
refinement process. We also assume that the partial order defined by C1 should
be realized by C2, but the order of C2 may be stronger. Therefore we provide
the following definitions.

Definition 4 (Conformance of Pomsets). Given two collaboration-pomsets
P1 and P2, we say that P2 conforms to P1 if the events of P2 include the events
of P1, the order of P2 is a refinement of the order of P1 and the restriction of
the labelling and role mapping functions of P2, restricted to the events of P1, are
equal to the functions of P1.
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Definition 5 (Conformance of Collaborations). Given two collaborations
C1 and C2, we say that C2 conforms to C1 if for each collaboration-pomset P
in the behavior of C2, there is a collaboration-pomset in the behavior of C1 to
which P conforms.

3 Deriving Conforming Distributed Design Models

3.1 Basic Ideas

Since the early work in this area [13,20], the following basic ideas were pro-
posed for the derivation of a distributed design model from a global requirements
model:

1. The distributed design consists of processes for each role. The processes per-
formed by different roles communicate through the exchange of messages.

2. The process of a given role r is obtained from the global requirements collab-
oration by projecting its behavior onto role r, that is, by deleting all events
that are associated with other roles r′ �= r.

3. If an order should be introduced between two actions a1 → a2 associated with
different roles r1 and r2, respectively, one should introduce a coordination
message (called “flow message” in [1]) to be sent by r1 after the execution of
a1, and to be received by r2 before the execution of a2.

4. Each role has a reception pool where received messages are stored until their
consumption is requested by the local behavior. We distinguish the following
cases:
(a) A single input queue which receives the messages from all other roles.
(b) For each other role, messages are transmitted in FIFO order and stored

in the pool in separate FIFO queues.
(c) A simple pool of messages which can be requested for consumption in any

order (for instance [20]).

If we apply these principles to the global requirements model of Fig. 1(a) and
(b), we obtain the distributed design model of Fig. 1(e), which is shown in the
form of a MSC. The messages in this design are introduced according to point
(3) above. For the message sending and receiving actions, we use the notation
“sx : m1” and “ry : m2”, respectively, where x and y are the roles to which the
message is sent, and the role from where the message was received, and m1 and
m2 represent the types of the message involved.

It is important to note, that the messages m2 and m3 may lead to a race
condition at reception by role z, that is, m3 may arrive before m2, although it is
expected to arrive afterwards. A reception pool of type (b) or (c) (see above) is
introduced in order to deal with such race conditions. If such a pool is used by
role z, then it may consume these two messages in the order it expects, that is,
first m2 then m3. (If m3 arrives before m2, it will be stored in the pool; z will
wait for m2; and then it will request the consumption of m3). We note that a
reception pool type (a) will lead to a deadlock if m3 arrives before m2. Therefore,
this type of pool should be avoided.
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One says that a global requirements model is realizable if a conforming dis-
tributed design model can be found. We call basic implementation the design
model obtained by the basic approach above without any additional coordination
message (using point (3)). We say that the requirements model is directly real-
izable if the basic implementation with reception pool conforms to the global
requirements. We note that in the case that the global requirements are given
in the form of the simple MSC without alternatives, the specification is directly
realizable since it contains already all messages required for enforcing the order
of the distributed actions (for instance, if we take Fig. 1(e) as the global require-
ments model).

3.2 Review of Work on Realizability

Realizability of global specifications has been extensively studied by many
authors. Different formalisms have been used for defining the global specification,
while for the definition of the local behavior of each role normally state machine
models were used. The conditions for the realizability of High-level MSC (HMSC
for short) have been proposed in [21], for Message Sequence Graph (MSG for
short) in [22], and for Compositional MSCs in [20]. Some authors have discussed
the pathologies in HMSCs that prevent their realization like non-local choice
[2,10].

Global specifications in the form of a set of MSC are considered in [23]. This
is related to the problem of implied scenarios. This work is extended in [22] by
studying the realizability of MSC-graphs under FIFO communication. In both
papers, the specification is realizable if there exist concurrent automata which
implement the set of MSCs. Two types of realizability are considered: weak
realizability (where the distributed design may deadlock) and safe realizability
where no additional deadlock is introduced. In both cases, the behavior for each
role is modelled by a finite state machine and communication is through FIFO
queues.

In [20], they formally study under which conditions the global specification
(compositional MSC) is directly realizable, they prove that the absence of non-
deterministic, race and non-local choice lead to sound choice which is directly
realizable. Different composition operators (i.e., weak and strong sequence, alter-
native and parallel) between sub-collaborations are studied in [7,8], and how they
affect realizability.

In many cases the specifications are not directly realizable, however, they
are realizable by including additional coordination messages or parameter in
the implementation. Additional data is added to the messages to achieve safe
realizability for MSC specifications [24]. In [25], they consider the realizability of
local-choice HMSCs and proof that the implementation strongly conforms to the
specification using messages parameters. The authors of [7,8] report when strong
and weak sequence need coordination messages to achieve realizability, and [1]
introduces the cim message for the realization of alternatives. In [1,14], race
conditions in weak while loops are studied and an additional message parameter
is introduced for obtaining realizability.
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3.3 Alternatives with Different Terminating Roles

For enforcing a weak sequence between two collaborations C1 ;w C2, no coordi-
nation messages are required in the distributed design model since the ordering
defined by weak sequence is a local order only. This is different for the strict
sequence C1 ;s C2 which defines globally that all actions of C2 must be after all
actions of C1. This can be ensured by introducing coordination messages from
all roles performing a final action of C1 (called terminating roles of C1) to all
roles performing an initial action of C2 (called initiating roles of C2) [1,12].

In the case of a collaboration with alternatives C1 and C2, followed in strict
sequence by another collaboration C3, the situation is in general more complex,
as shown by the example of Fig. 3. This case is not mentioned in [13], and it is
excluded from the discussion in [1,12], If the alternatives have different sets of
terminating roles, the initiating roles of C3 have to wait for two alternative sets
of coordinating messages. In the example of Fig. 3, the choice between the two
alternatives is made by role y (local choice), and role w has to consume, before
the action e6 in collaboration C3, either two coordination messages from roles x
and z, or another message from role z (we assume that all coordination messages
can be distinguished by their type).

e1

e2

e4

e6

e3

e5

(x) (y) (z) (w)

C3

C2

C1

Fig. 3. Alternatives with different terminating roles

3.4 Interface Provided by the Reception Pool

The reception pool should provide an interface to the local behavior at the given
role which allows to specify which messages are candidate for consumption. For
avoiding the race condition in the behavior of Fig. 1(e), the local behavior at role
z would request the consumption of message m2, and then of message m3. In
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the case of the local behavior of role z in the alternative of Fig. 3, the first action
in both alternatives would be the reception of a message. The local behavior
would request the consumption of one of these messages and would be informed
which message was received. We note that we assume that the messages can all
be distinguished by their type (and/or by the sending role). We call such an
interface a basic pool interface. It can be constructed using the basic Internet
socket interface for communication with a single partner. Such an interface is for
instance provided by the BPEL programming environment, which is often used
for the distributed implementation of Web Service Applications.

We note, however, that this basic interface is not natural for handling strict
order between two collaborations. In this case, an initiating role of the second
collaboration would start with requesting the consumption of a set of messages,
namely all messages to be received from the terminating roles of the first col-
laboration. The situation becomes even more complex for strict sequence after
alternatives with different sets of terminating roles, as discussed above. In this
case, the initiating role after the alternative would naturally request two or more
alternative sets of messages to be consumed. In the example of Fig. 3, the behav-
ior of role w for sub-collaboration C3 would start with requesting either the set of
messages {rx : m1, rz : m2} or {rz : m3}. Such an interface is unfortunately not
provided for BPEL programming. Also the interface function which allows for
requesting the consumption of a certain message type with a parameter that has
a given integer value (which is useful for handling weak while loops, as discussed
in the next section), is not available with BPEL.

3.5 A Role Does Not Participate in all Alternatives

In the case of choice between several alternatives, as shown in Fig. 4, where one
of the alternatives does not participate in all roles, i.e., alternative A doesn’t
participate in z, [1] suggested the introduction of a choice indication message
cim to indicate the choice to those roles that do not participate in the alternative.
Without such a coordination message the role z in Fig. 4 would not know when
to start the initial action of collaboration C3 when this alternative is chosen. We
note that problem was not mentioned in [20].

Here we would also like to point out that this cim message is not required if
the subsequent collaboration follows in strict sequence, and in the case of weak
sequence only if the role in question has an initiating role in the subsequent
collaboration. If in Fig. 4 the m6 message would go in the opposite direction
(and role z would not be initiating), role z could simply request the pool for the
consumption of m5 or m6.

4 Weak While Loop

We consider in this section a requirements model including a weak while loop
as shown in Fig. 2(b). We assume that the decision of repeating collaboration
C1 or finishing with C2 is a local choice. In the example of Fig. 5, this is done
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Fig. 4. An example where role z does not participate in all alternatives (α is part of
the design model where cim must be received)

by role x. We call this role the initiator of the loop. The other roles are called
dependent roles. It is important to note that the first event of a dependent
role in C1 or in C2 is always the reception of a message (since otherwise the role
would be initiating, and the choice would not be local). We also assume that all
collaboration-pomsets of C1 and C2 involve the same set of roles.

It has been pointed out in the literature that a race may occur for a dependent
role between the reception of the first messages of C1 and C2. For instance in
Fig. 5, if the transmission of m2 during the last repetition of C1 is delayed for
some reason, the role z may receive m5 before the last message m2. We call such
a race a termination race of the loop.

Another problem that may occur is the following: If a given type of message of
C1 is not transmitted over a FIFO channel from the sending role to the receiving
role, then it may happen that the message instance of the nth repetition of
C1 is overtaken by the instance of the next repetition. If the message has no
parameters, then there is no problem, but otherwise the parameter values would
arrive out of order. We call this problem message overtaking. For instance,
we note that message type m8 in Fig. 5 may have message overtaking in the case
that C1 is repeated twice and the transmission of the first message m8 is very
slow.

Proposition 1. A weak while loop with local choice is directly realizable if it
does not contain any termination race nor message overtaking.

Proof. The absence of termination race means: For any dependent role r that
receives the first messages m1 and m2 in C1 and C2, respectively, it can never
happen that the message m2 is received by r while m1 still in transit. Also, the
absence of message overtaking means: For any dependent role r and any message
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x
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y z v

m3
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m7

Fig. 5. An example of a weak while loop where role x is the loop initiator

type m received within C1, it can never happen that a message of type m is
overtaken by another instance of that type belonging to the next repetition of C1.
There is no need for any coordination messages since the messages are consumed
in the right order. Therefore the weak while loop is directly realizable. �

In the following we discuss under what conditions there are no such problems
and how a given role can be implemented in the distributed design model in the
case that there are problems.

4.1 Checking the Requirements Model for Problems

We analyse in this subsection the requirements model and give some propositions
that ensure the absence of termination race and message overtaking.

Proposition 2 (Absence of termination race). A dependent role r of a
weak while loop has no termination race if one of the following conditions is
satisfied:

(a) The reception of the first message m by r in C1 is before that last event in
C1 of the initiator.

(b) The first messages received by r in C1 and C2 are sent by the same role r′,
and the communication is over a FIFO channel. Note that it is assumed here
that role r′ has no termination race.

Proof. For (a): If the first message m in C1 to be received by r is in transit, then
it must have been sent and not yet received. Since the reception is before the
last event in C1 of the initiator, the initiator must be involved in the execution
of C1 when a message m is in transit. Therefore there can never be the first
message received by r in C2 in transit at the same time. Therefore there cannot
be a race.

For (b): Since we assume that the sending role r′ has no termination race,
the first messages in C1 will be sent before the first message in C2. Because they
are sent over a FIFO channel, they will also be received in this order. �
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Proposition 3 (Absence of message overtaking). For the reception of a
message type m by a role r during the repetitions of C1, there is no danger of
message overtaking, if one of the following conditions is satisfied:

(a) The reception of the message is before the last event in C1 of the initiator.
(b) The message is received over a FIFO channel from the sending role.
(c) The receiving role is the initiator of the loop.

Proof. The proof for (a) is similar to the previous proposition. Point (b) is
evident. Point (c) follows from the fact that the initiator waits for receiving all
messages related to one repetition of C1 before it starts another repetition. �

4.2 Deriving a Distributed Design Model for a Weak While Loop

To get a conforming distributed design model in the case of a termination race, it
was suggested in the literature to include in the first messages received by a role
in C1 and in C2 a sequence parameter which indicates the number of repetitions
of C1, and accept the first message of C2 only if it contains the right sequence
number. This approach was also used in [1], however, for all roles and with
sequence parameters in all messages. This, by the way, also solves the message
overtaking problem.

In this section we discuss how a conforming design model can be constructed
by introducing a minimum number of sequence parameters in messages.

As pointed out by Proposition 1, the basic implementation provides a con-
forming design model if there are no problems of termination race nor message
overtaking. We propose to construct a conforming design model by starting out
with the basic implementation, and then performing modifications to the behav-
ior of those roles that have any of these problems.

For a role r that has termination race (TR), one of the following modifications
can be used:

– Modification-TR-1:
(a) A sequence parameter is introduced into the first message receive in C2.
(b) The behavior has a local variable N which is initialized to 0 before the

while loop starts. Each time the first message of C1 is received, N is
incremented.

(c) In the request to the message pool for consuming the first message of C1

or C2, a condition is added to the consumption of the first message of C2,
namely that the parameter value is equal to N.

(d) This assumes that the behavior of the sending role also has a modification
introducing a local variable N (which is incremented) and sending the
value of N as message parameter.

This modification-TR-1 corresponds to what is proposed in [1]. It presents the
difficulty that a message pool providing a suitable interface must be used. To
avoid this difficulty, the following modification was proposed in [14].
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– Modification-TR-2: Points (a), (b) and (d) as above. Instead of (c), we
have the following:

• A request is given to the message pool to consume the first message of
C1 or of C2. If the first message in C2 is received, the message is stored
in a buffer and its parameter is stored in a second local variable M. If
(M = N), the behavior of C2 starts using the first message in the buffer.
Otherwise the local behavior of C1 is performed. Then the process goes
back to the beginning of the loop and waits again for an instance of first
message for C1 or C2,

For a role r that has message overtaking(MO) for a message type m, the
following modifications can be used:

– Modification-MO-1: Points (b) and (d) as in Modification-TR 1. Instead
of (a) and (c), we have the following:

• A sequence parameter is introduced into the message type that has the
problem of overtaking.

• In the request for consumption to the message pool of message m, a
condition is added to the consumption, namely that the parameter value
is equal to N.

• Modification-MO-2: Ensure that the message m is received through a FIFO
channel.

Modification-MO-1 has the disadvantage that an additional message param-
eter must be introduced and the message pool needs to support consumption
requests with parameter conditions. It is often much easier to ensure FIFO deliv-
ery between the sending and receiving roles.

Proposition 4 (Conforming design model). Given a requirements model
R and a distributed design model D. D conforms to R if the following condition
is satisfied: D is obtained from the basic implementation of R by applying the
following modifications:

(a) For each responding role that has a termination race according to R, apply
Modification-TR-1 or Modification-TR-2.

(b) For each reception by some depending role of some message with the prob-
lem of message overtaking according to R, apply Modification-MO-1 or
Modification-MO-2.

Proof. We have to show that the following conditions are satisfied:

(a) Collaboration C1 is executed by all roles the same number of times.
(b) During the N th execution of C1 by a given role r, each message m consumed

by r was sent by the sending role r′ during its N th execution of C1.
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Condition (b) follows from point (b) of the Proposition. It is straightforward
to prove that the Modification-MO-1 or Modification-MO-2 assures that there is
no message overtaking in the design model. For proving Condition (a), we have
to prove that if Modification-TR-1 or Modification-TR-2 are introduced for a
role r, this ensures that C2 is executed by r only after C1 has been executed N
times, where N is the number of time that the loop initiator executed C1.

For this purpose, we group the roles into role-sets RS(i) (i = 0, 1, 2, ...). The
initiator is in RS(0) and any dependent role that receives the first message of
C2 from a role in RS(i) is in RS(i+1). Now we do the proof by induction over
i. Suppose that the roles in RS(i) execute C1 the same number of times N as
the initiator, then any role in RS(i+1) receives the first message of C2 with
the parameter N. It is easy to see that Modification-TR-1 or Modification-TR-2
ensure that the role will also executed C1 N times before it executes C2. When
it executes C2 and sends an initial message to another role, then this message
will also include the parameter N. We conclude that all first messages of C2

will include the same parameter value and therefore all roles will execute C1 the
same number of times. �

5 Conclusion

We consider the derivation of a distributed design model from a global require-
ments model which identifies the different actions to be performed by the differ-
ent system components and a partial order that determines the order in which
these actions may be performed. The distributed design model defines for each
component the local actions to be performed and their order. We call basic imple-
mentation a design model obtained by projection of the requirements model onto
each component. If this design model conforms to the requirements, we say that
the requirements are directly realizable. However, in most cases additional coor-
dination messages or parameters must be introduced to coordinate the order of
actions at different components. We study special cases of alternatives followed
by strict or weak sequence. We show that the choice indication message cim,
introduced in [1] is not required in many cases.

We also study the implementation of the weak while loop, which may have
the problems of termination race and message overtaking. We show under which
conditions these problems are absent, and the loop is directly realizable. For
the other cases, we show how a conforming design model can be obtained by
introducing minimal changes to the basic implementation. Overall, this is an
important improvement over what is proposed in [1].

This work is important in the context of distributed system design where the
designers and developers should consider these problems and know how to solve
them. This work is also important for the construction of tools that generate
code for distributed applications in order to generate code without design flaws.

In the near future, we plan to use the formal partial order description to prove
the conformance of the derived design model and to implement the derivation
algorithm in a tool environment.
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